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Nonlinear partial differential equations are widely used to describe complex phenomena in various
fields of science, for example the Korteweg-de Vries-Kuramoto-Sivashinsky equation (KdV-KS equa-
tion) and the Ablowitz-Kaup-Newell-Segur shallow water wave equation (AKNS-SWW equation).
To our knowledge the exact solutions for the first equation were still not obtained and the obtained
exact solutions for the second were just N-soliton solutions. In this paper we present kinds of new
exact solutions by using the extended tanh-function method.
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1. Introduction

1.1. The Proposed Method

The investigation of the travelling wave solutions of
nonlinear equations play an important role in the study
of nonlinear wave phenomena. The wave phenomena
observed in fluid dynamics, plasma and elastic media
are often modelled by the bell-type sech solutions and
the kink-type tanh solutions. There has been signifi-
cant progress in the development of the methods to
solve the problem we mentioned, such as inverse scat-
tering method, Darboux transformation [1 – 7], Hirota
bilinear method [8 – 10], algebro-geometric method
[11 – 14] and tanh method [15]. Among them, the tanh
method is considered to be the most effective and di-
rect method for solving nonlinear equations. Recently,
much research work has been concentrated on the var-
ious extensions and applications of the tanh method
[16 – 20]. Our approach stems mainly from Fan and
Zhang [21, 22] and Chen et al. [21 – 23]. The differ-
ence between our method and theirs is that we adopt a
different extension. For given a nonlinear equation

H(u,ut ,ux,uxx, · · · ) = 0, (1)

the main steps of our proposed are given as follows.
Step 1. By using the wave transformation u(x, t) =

U(ξ ), ξ = x + ct, we reduce (1) into an ordinary dif-
ferential equation (ODE):

H(U,U ′,U ′′, · · · ) = 0. (2)
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Step 2. We introduce a new variable ω = ω(ξ )
which is a solution of the Riccati equation

ω ′ =
dω
dξ

= R+ ω2, (3)

where R is a constant to be determined later. Then the
derivatives with respect to the variable ξ become the
derivatives with respect to the variable ω as

d
dξ

→ (R+ ω2)
d

dω
,

d2

dξ 2 → 2ω(R+ ω2)
d

dω
+(R+ ω2)

d2

dω2 , · · · .

Step 3. By virtue of the variable ω , we expend the
solution of (4) as

u(x, t) =U(ξ )= a0 +
n

∑
i=1

aiω i +ciω i−1
√

R+ ω2, (4)

where ai,ci (i = 1,2, · · · ,n) are also constants to be de-
termined later. This expansion is different from Fan’s
and Chen’s. Fan’s expansion is

u(x, t) = U(ξ ) = a0 +
n

∑
i=1

aiω i,

Chen’s is

u(x, t) = U(ξ ) = a0 +
n

∑
i=1

aiω i + biω−i

+ ciω i−1
√

R+ ω2 + di

√
R+ ω2

ω j .
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Then, balancing the highest derivative term with the
nonlinear terms in (2) will give an equation about pos-
itive integers n, from which the possible value of n can
be obtained. The value leads to the series expansions
of the exact solutions for (1).

Step 4. Substituting the (4) into (2) and setting the
coefficients of all powers of ω i and ω i

√
R+ ω2 to

zero, we will get a system of algebraic equations, from
which the constants R,c,ai,ci (i = 0,1, · · · ,n) can be
found explicitly making use of Mathematica.

Step 5. The Riccati equation (3) has the following
general solutions:

(i) If R < 0,

ω(ξ ) = −√−R tanh(
√−Rξ ), (5)

ω(ξ ) = −√−Rcoth(
√−Rξ ). (6)

(ii) If R = 0,

ω(ξ ) = − 1
ξ

. (7)

(iii) If R > 0,

ω(ξ ) =
√

R tan(
√

Rξ ), (8)

ω(ξ ) = −
√

Rcot(
√

Rξ ). (9)

Substituting the values R,c,ai,ci (i = 0,1, · · · ,n) ob-
tained in Step 4 into (4) – (9),the travelling wave solu-
tions of (3) are obtained.

1.2. The Two Nonlinear Equations

In this paper, we obtain exact solutions for the
Korteweg-de Vries-Kuramoto-Sivashinsky (KdV-KS)
equation and the Ablowitz-Kaup-Newell-Segur shal-
low water wave (AKNS-SWW) equation through the
proposed method. The KdV-KS equation [24, 25]

ut + δuxxx + β (uxx + uxxxx)+ (ux)2 = 0, (10)

where u = u(x,t) is a real-valued function and δ ,β
are constants, was derived independently by Sivashin-
sky [26] and Kuramoto and Tsuzuki [27]. The KdV-KS
equation (10) is a model for amplitude and phase ex-
pansion of pattern formations in different physical sit-
uations, for example in the theory of a flame propaga-
tion in turbulent flows of gaseous combustible mixtures
[26], and in the theory of turbulence of wave fronts in
reaction-diffusion systems [27]. The Cauchy problem

and the global well-posedness for (10) were researched
by Bona et al. [28]. The AKNS-SWW equation [29]

ut + ux + 4uut + 2ux∂−1
x ut −uxxt = 0 (11)

is one of the well-known shallow water wave equa-
tions. Its complete integrability and solvability by
the inverse scattering method have been proved by
Ablowitz et al. [29], and N-soliton solutions have
been given by Hirota and Satsuma [30] via a bilin-
ear method. A catalogue of classical and non-classical
symmetry reductions and a Painlevé analysis for the
AKNS-SWW equation are given by Clarkson and
Mansfield [31]. The present paper is motivated by the
desire to find kinds of more and new exact solutions
for these two equations by using the extended tanh-
function method.

2. Exact Solution for the KdV-KS Equation

In this section, we consider the KdV-KS equation
(10). Using the transformation u(x, t) = U(ξ ),ξ = x+
ct, from (10) we get an ordinary differential equation:

cU ′(ξ )+ δU ′′′(ξ )+ β (U ′′(ξ )

+U (4)(ξ ))+ (U ′(ξ ))2 = 0.
(12)

According to the method in Section 1, by balancing the
highest-order derivative term with the nonlinear term
in (12), we get the equation n + 4 = 2(n + 1); so we
know n = 2. Therefore, based on (4), we expand the
solution of (10) as

u(x, t) = U(ξ ) = a0 + a1ω + a2ω2

+ c1

√
R+ ω2 + c2ω

√
R+ ω2,

(13)

where ω satisfies (3). Substituting (13) into (12) and
using Mathematica, we get an equation about ω i and
ω i

√
R+ ω2. Setting the coefficients of all powers of

ω i and ω i
√

R+ ω2 to zero, we obtain a system of al-
gebraic equations:

cRa1 + 2R2δa1 + R2a2
1 + 2R2β a2

+ 16R3β a2 + R3c2
2 = 0,

2Rβ a1 + 16R2β a1 + 2cRa2 + 16R2δa2

+ 4R2a1a2 + 2R2c1c2 = 0,

ca1 + 8Rδa1 + 2Ra2
1 + 8Rβ a2 + 136R2β a2

+ 4R2a2
2 + Rc2

1 + 5R2c2
2 = 0,
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2β a1 + 40Rβ a1 + 2ca2 + 40Rδa2

+ 8Ra1a2 + 6Rc1c2 = 0,

6δa1 + a2
1 + 6β a2 + 240Rβ a2

+ 8Ra2
2 + c2

1 + 8Rc2
2 = 0,

24β a1 + 24δa2 + 4a1a2 + 4c1c2 = 0,

120β a2 + 4a2
2 + 4c2

2 = 0,

Rβ c1 + 5R2β c1 + cRc2 + 5R2δc2 + 2R2a1c2 = 0,

cc1 + 5Rδc1 + 2Ra1c1 + 5Rβ c2

+ 61R2β c2 + 4R2a2c2 = 0,

2β c1 + 28Rβ c1 + 4Ra2c1 + 2cc2

+ 28Rδc2 + 6Ra1c2 = 0,

6δc1 +2a1c1 +6β c2 +180Rβ c2 +12Ra2c2 = 0,

24β c1 + 4a2c1 + 24δc2 + 4a1c2 = 0,

120β c2 + 8a2c2 = 0.

With the aid of Mathematica, we obtain the solutions
of the algebraic system as follows:

R = −1, c = −3δ
2

, a1 = −15δ
4

, a2 = −15δ
4

,

c1 = ±15δ
4

, c2 = ±15δ
4

, β =
δ
4

;

R = −1
4
, c = −3δ

2
, a1 = −15δ

2
, a2 = ∓15δ

2
,

c1 = 0, c2 = 0, β = ±δ
4

;

R = 1, c = δ , a1 = −15δ
4

, a2 = −15δ
4

,

c1 = ±15δ
4

, c2 = ±15δ
4

, β =
δ
4

;

R =
1
4
, c = δ , a1 = −15δ

2
, a2 = ∓15δ

2
,

c1 = 0, c2 = 0, β = ±δ
4

;

R = −1, c = −3δ
2

, a1 = −15δ
4

, a2 =
15δ

4
,

c1 = ±15δ
4

, c2 = ∓15δ
4

, β = −δ
4

;

R = 1, c = δ , a1 = −15δ
4

, a2 =
15δ

4
,

c1 = ±15δ
4

, c2 = ∓15δ
4

, β = −δ
4
.

Fig. 1. The kink-type solution u1 with δ = −1,a0 = 0.75.

Fig. 2. The kink-type solution u2 with δ = −1,a0 = 0.75.

According to the result, R �= 0 and, only under the
condition β = ± δ

4 , the algebraic system has solutions
which lead valuable exact solutions for (10).

Case 1. R =−1, according to (5), we obtain a kink-
type solution (Fig. 1):

u1 = a0+
15δ

4
tanh

(
x− 3δ

2
t

)
−15δ

4
tanh2

(
x− 3δ

2
t

)

± 15δ
4

isech

(
x− 3δ

2
t

)

∓ 15δ
4

i tanh

(
x− 3δ

2
t

)
sech

(
x− 3δ

2
t

)
.

Case 2. R =− 1
4 , according to (5), we obtain a kink-

type solution (Fig. 2):

u2 = a0 +
15δ

4
tanh(

x
2
− 3δ

4
t)− 15δ

8
tanh2(

x
2
− 3δ

4
t).
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Fig. 3. The periodic wave solution u3 with δ = −1,a0 = 1.

Fig. 4. The periodic wave solution u4 with δ = −1,a0 = 1.

Case 3. R = 1, according to (6), we obtain a peri-
odic wave solution (Fig. 3):

u3 = a0 − 15δ
4

tan(x+ δ t)− 15δ
4

tan2(x+ δ t)

±15δ
4

sec(x+ δ t)± 15δ
4

tan(x+ δ t)sec(x+ δ t),

Case 4. R = 1
4 , according to (6), we obtain a peri-

odic wave solution (Fig. 4):

u4 = a0 − 15δ
4

tan(
x
2

+
δ
2

t)− 15δ
8

tan2(
x
2

+
δ
2

t).

These four cases satisfy the condition β = δ
4 .

We draw some plots for some formal solutions, so
that we can learn the properties of these solutions
(Figs. 1 – 4).

Remark 1. Since cot- and coth-type solutions ap-
pear in pairs with tan- and tanh-type solutions, respec-
tively, they are omitted in this section.

Remark 2. When β = − δ
4 , the solutions we get are

similar with the ones we have obtained, so they are
omitted.

3. Exact Solution for the AKNS-SWW Equation

In this section, we consider the AKNS-SWW equa-
tion (11). Just the same as in Section 2, we use the
transformation u(x, t) = U(ξ ),ξ = x + ct. According
to (11) we get an ordinary differential equation

(c+1)U ′(ξ )+6cU(ξ )U ′(ξ )−cU ′′′(ξ ) = 0. (14)

According to the method in Section 1, by balancing the
highest-order derivative term with the nonlinear term
in (14), we get the equation n+3 = 2n+1; so we know
n = 2. Based on (4), we can also expand the solution
of (11) as (13), where ω satisfies (3). Substituting (13)
into (14) and using Mathematica, we get an equation
about ω i and ω i

√
R+ ω2. Setting the coefficients of

all powers of ω i and ω i
√

R+ ω2 to zero, we obtain a
system of algebraic equations:

Ra1 + cRa1−2cR2a1 +6cRa0a1 +6cR2c1c2 = 0,

6cRa2
1 + 2Ra2 + 2cRa2−16cR2a2 + 12cRa0a2

+ 6cRc2
1 + 6cR2c2

2 = 0,

a1 + ca1−8cRa1 + 6ca0a1 + 18cRa1a2

+ 24cRc1c2 = 0,

6ca2
1 + 2a2 + 2ca2 −40cRa2

+ 12ca0a2 + 12cRa2
2 + 6cc2

1 + 18cRc2
2 = 0,

−6ca1 + 18ca1a2 + 18cc1c2 = 0,

−24ca2 + 12ca2
2 + 12cc2

2 = 0,

6cRa1c1 + Rc2 + cRc2 −5cR2c2 + 6cRa0c2 = 0,

c1 + cc1 −5cRc1 + 6ca0c1 + 12cRa2c1

+ 12cRa1c2 = 0,

12ca1c1 + 2c2 + 2cc2 −28cRc2 + 12ca0c2

+ 18cRa2c2 = 0,

−6cc1 + 18ca2c1 + 18ca1c2 = 0,

−24cc2 + 24ca2c2 = 0.

With the aid of Mathematica, we solve the algebraic
system, and obtain c, a1, a2, c1, c2:

c =
1

−1+ 5R−6a0
, a1 = 0, a2 = 1,

c1 = 0, c2 = ±1;

c =
1

−1+ 8R−6a0
, a1 = 0, a2 = 2,

c1 = 0, c2 = 0,
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Fig. 5. The bell-type solution u1 with a0 = 1,R = −2.

Fig. 6. The singular solution u2 with a0 = 1,R = −2.

where R is an arbitrary constant. Substituting them
in (13), some kinds of exact solutions for (11) are
shown.

Case 1. R < 0, according to (5) and (6), we obtain
two bell-type solutions, a singular solution and a ratio-
nal solution (Figs. 5 – 8):

u1 = a0 −R tanh2
[√−R

(
x+

1
−1+ 5R−6a0

t

)]

± iR tanh

[√−R

(
x+

1
−1+ 5R−6a0

t

)]

· sech

[√−R

(
x+

1
−1+ 5R−6a0

t

)]
,

u2 = a0 −Rcoth2
[√−R

(
x+

1
−1+ 5R−6a0

t

)]

±Rcoth

[√−R

(
x+

1
−1+ 5R−6a0

t

)]

· csch

[√−R

(
x+

1
−1+ 5R−6a0

t

)]
,

u3 = a0−2R tanh2
[√−R

(
x+

1
−1+ 8R−6a0

t

)]
,

Fig. 7. The bell-type solution u3 with a0 = 1,R = −2.

Fig. 8. The rational solution u4 with a0 = 1,R = −2.

Fig. 9. The rational solution u5 with a0 = 1,R = 0.

u4 = a0−2Rcoth2
[√−R

(
x+

1
−1+ 8R−6a0

t

)]
.

Case 2. R = 0, according to (7), we obtain a rational
solution (Fig. 9):

u5 = a0 +
2

(x− 1
1+6a0

t)2
.

The plots for the solutions are also given, so that the
properties of these solutions are shown (Figs. 5 – 9).
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Remark 1. Since tan- and cot-type solutions (when
R > 0) appear in pairs with tanh- and coth-type solu-
tions, respectively, they are omitted in this section.

Remark 2. Although we can not find the N-soliton
solutions for (11), which Hirota obtained. We get not
only solitary solutions, but also more other kinds of
solutions.

4. Conclusions

In this paper, making use of the extended tanh-
function method, we successfully obtain the ex-

act travelling wave solutions for the KdV-KS equa-
tion and the AKNS-SWW equation. What’s more,
the properties of the solutions of the two equa-
tions have been shown clearly by means of their
figures.
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